On the Minimal Density of Triangles in Graphs

نویسنده

  • Alexander A. Razborov
چکیده

The most famous result of extremal combinatorics is probably the celebrated theorem of Turán [20] determining the maximal number ex(n;Kr) of edges in a Kr-free graph on n vertices. Asymptotically, ex(n;Kr) ≈ ( 1− 1 r−1 ) ( n 2 ) . The non-trivial part (that is, the upper bound) of this theorem in the contrapositive form can be stated as follows: any graph G with m > ex(n;Kr) edges contains at least one copy of Kr. The quantitative version of this latter statement (that is, how many such copies, as a function fr(m,n) of r, n,m, must necessarily exist in any graph G) received quite a fair attention in combinatorial literature (in more general context of arbitrary forbidden subgraphs, questions of this sort were named in [7] “the theory of supersaturated graphs”) and turned out to be notoriously difficult. Erdös [4, 5] computed fr(m,n) exactly when m is very close to ex(n;Kr); more specifically, when m ≤ ex(n;Kr) + Crn (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Tensor Product of Graphs, Girth and Triangles

The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.

متن کامل

The Number of Large Graphs with a Positive Density of Triangles

We give upper and lower bounds on the number of graphs of fixed degree which have a positive density of triangles. In particular, we show that there are very few such graphs, when compared to the number of graphs without this restriction. We also show that in this case the triangles seem to cluster even at low density.

متن کامل

Some finite groups with divisibility graph containing no triangles

Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...

متن کامل

Designing Solvable Graphs for Multiple Moving Agents

Solvable Graphs (also known as Reachable Graphs) are types of graphs that any arrangement of a specified number of agents located on the graph’s vertices can be reached from any initial arrangement through agents’ moves along the graph’s edges, while avoiding deadlocks (interceptions). In this paper, the properties of Solvable Graphs are investigated, and a new concept in multi agent moti...

متن کامل

Cohen-Macaulay $r$-partite graphs with minimal clique cover

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2008